
LECTURE 3: PRINCIPAL BUNDLES AND VECTOR BUNDLES

1. INTRODUCTION: DIRAC’S CHARGE QUANTIZATION

Before we start, let us summarize the main conclusion from last week’s lecture about
Maxwell theory:

• Maxwell theory can be conveniently rephrased in the language of differential
forms by collecting the electric and magnetic fields into a 2-form F, called the
field strength. Maxwell’s equations can then be written as

(1) dF = 0, d ? F = ?J,

where the 1-form J describes the distribution of charges and currents. The ad-
vantage of this formulation is that the equations (1) now make sense on any mani-
fold M equipped with a (pseudo)-riemannian metric.
• The first equation of (1), called the homogeneous Maxwell equation, implies that

F ∈ Ω2(M) defines a cohomology class [F] ∈ H2
dR(M). When this class is trivial,

we can write F = dA for some 1-form, called the potential. With this, the homo-
geneous Maxwell equation is automatically satisfied, and the second, inhomoge-
neous Maxwell equation in (1) becomes a PDE for the potential A controlled by
the action functional

S(A) = 〈F(A), F(A)〉 =
∫

M
F ∧ ?F.

• The representation of the field strength by the potential by means of the equation
F = dA is not unique: two potentials that differ by the derivative of a function
dΛ define the same field strength because d2 = 0. The map A 7→ A + dΛ is
called a gauge transformation. The relevant configuration space is therefore given
by

“Potentials/Gauge Transformations′′ = Ω1(M)/dΩ0(M).

The transition to go from the field strength F to the potential is not completely trivial
and requires some care. In one of the exercises of this week you will construct an exact
sequence of the form

0 −→ H1
dR(M) −→ Ω1(M)/dΩ0(M)

d−→ Ω2
cl(M) −→ H2

dR(M) −→ 0,

where Ω2
cl(M) denotes the space of closed 2-forms. The way to think about this exact

sequence is as follows: the first de Rham cohomology group controls the injectively of
the map d : Ω1(M)/dΩ0(M) → Ω2

cl(M), i.e., H1
dR(M) is its kernel. On the other hand,
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2 LECTURE 3: PRINCIPAL BUNDLES AND VECTOR BUNDLES

the second cohomology group controls the surjectivity and H2
dR(M) equals the cokernel.

Let us discuss the effect of these groups:

i) When H1
dR(M) 6= 0, the configuration space Ω1(M)/dΩ0(M) contains more

than necessary to describe the field strength F, i.e., the electro-magnetic field.
Therefore, at first, this space does not seem to be the correct one to describe the
configuration space of Maxwell theory: it is “too big”. This reasoning is correct
when only Classical Mechanics is concerned, however for Quantum Mechanics
the situation is different: The famous Aharanov–Bohm effect shows that Quan-
tum Mechanical particles are “sensitive” to H1

dR(M) and therefore the descrip-
tion in terms of the potential A, rather than that in terms of F is the correct one.
(More details next lecture...)

ii) However, the equation F = dA can only be solved for A when F is the trivial
cohomology class in H2

dR(M). When F represents a nontrivial class, we can only
solve F = dA locally in a neighborhood of any point, by Poincaré’s Lemma. It
was shown by Dirac, that working consistently with potentials AU defined only
locally over opens U, works Quantum Mechanically if the integrals

(2)
∫

S2
F ∈ 2π

√
−1Z,

for any embedded 2-sphere S2 ⊂ M. (Otherwise the Quantum-Mechanical wave
function would not be single valued.) We have seen an example of such a con-
figuration in the exercise about the magnetic monopole. Inserting the physical
units, which involves putting the fundamental unit of electric charge in front
of the integral above, this offers an explanation of the quantization of electric
charge, by means of consistency of Quantum Mechanics.

Dirac’s charge quantization condition actually has a beautiful topological interpreta-
tion using de Rham’s theorem. Recall that the advantage of singular cohomology over
de Rham cohomology is that for the former we can work over any abelian group, not
necessarily R as in de Rham’s cohomology group. For the singular chains, we can
equally well work with S∞

n (M, Z) ⊂ S∞
n (M, R), i.e., finite sum of smooth singular

chains with integral coefficients. The differential ∂ is obviously well-defined over the
subgroup S∞

n (M, Z and this leads to the singular homology and cohomology with coef-
ficients in Z: Hsing

n (M, Z) and Hn
sing(M, Z). The inclusion S∞

n (M, Z) ⊂ S∞
n (M, R) leads

to an obvious map Hk
sing(M, Z)→ Hk

sing(M, R).

Definition 1.1. We say that a closed k-form ω on M is integral if the image of the coho-
mology class [ω] ∈ Hk

dR(M) is in the image of the map Hk
sing(M, Z)→ Hk

sing(M, R).

Unravelling the definition of de Rham’s isomorphism this means that for an integral
closed form ω ∈ Ωk(M),

∑
i

ni

∫
∆k

σ∗i ω ∈ Z,



LECTURE 3: PRINCIPAL BUNDLES AND VECTOR BUNDLES 3

for any closed smooth singular chain σ := ∑i niσi, ni ∈ Z. In particular, taking the
fundamental class of an embedded 2-sphere, this implies (2) for the 2-form F/2π

√
−1.

But what about the potential A? We can either work with local potentials, but this
hides the geometry behind the mathematical theory of Maxwell’s equations. To get a
global picture, let us first recall some basics: we denote by U(1) the circle group of
complex numbers of unit length: z = eiθ with multiplication

z1z2 = ei(θ1+θ2).

We may either denote an element of U(1) by z or θ. An action of U(1) on a manifold X
is given by a family ϕz : X → X of smooth diffeomorphisms of X subject to

ϕ0 = idX, ϕz1 ◦ ϕz2 = ϕz1z2 .

An action of U(1) on X induces a vector field ξ on X defined by

ξ(x) :=
d
dt

ϕeit(x)
∣∣∣∣
t=0

,

called the generating vector field of the action. Finally, the action is called free if

ϕz(x) = x, ∀x ∈ X =⇒ z = 1.

Theorem 1.2. Given an integral closed 2-form F/2πi on a manifold M there exists a triple
(P, π, A) with:

i) P is a smooth manifold equipped with a free action of U(1),
ii) π : P → M is a surjective submersion for which U(1) acts along the fibers of π,

inducing an isomorphism P/U(1) ∼= M. Furthermore, π is locally trivial in the
following sense: for each x ∈ M there exists an open neighborhood U together with an
isomorphism φU : π−1(U)

∼=−→ U ×U(1), compatible with the projection in the sense
that the following diagram commutes:

π−1(U)

π

��

φU // U ×U(1)

proj
xx

U

iii) A is a 1-form satisfying:
– it is U(1)-invariant, i.e., ϕ∗z A = A, ∀z ∈ U(1),
– evaluating on the generating vector field gives A(ξ) = 1,
– dA = πF.

Proof. 1 We give the proof in the case that M is simply-connected. Choose a base-point
x0 ∈ M and denote by P(x0) the space of all piece-wise smooth path in M starting
in x0. When two paths γ0, γ1 ∈ P(x0) have the same end-point they are homotopic

1The proof can be omitted; we also did not do this in the lecture.
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by the assumption that M is simply connected, i.e., there is a piecewise smooth map
H : [0, 1]× [0, 1]→ M with H(0, t) = γ0(t), H(1, t) = γ1(t) and H(s, 0) = x0, H(s, 1) =
γ0(1) = γ1(1). In other words, there is an isomorphism

P(x0)/ ∼h
∼= M

given by evaluating a path at its end-point. Now consider the product P(x0)×U(1).
On this space we introduce an equivalence relation

(γ0, z0) ∼ (γ1, z1) ⇐⇒ γ0 ∼h γ1, and z0 = exp
(∫

H
F
)

z1.

Remark that this equivalence relation does not depend on the choice H of homotopy:
any two choices define a (piecewise) smooth embedded 2-sphere and F has integral
periods. It is easily checked that ∼ defines an equivalence relation and we define

P := (P(x0)×U(1))/ ∼ .

The action
ϕz(γ, z′) := (γ, zz′)

of U(1) on the product P(x0) ×U(1), descends to the quotient and defines a smooth
action of U(1) on P. The obvious projectionP(x0)×U(1)→ P(x0) induces a projection
π : P→ M compatible with the U(1)-action in the way stated in the theorem.

Let us now prove that the projection π : P → M is locally trivial. For this we fix a
point x1 ∈ M and consider a small open neighborhood U of x1 in M over which we can
solve F = dAU for some 1-form AU ∈ Ω1(U). The inverse image π−1(U) consists of all
equivalence classes [(γ, z)] with γ(1) ∈ U. Let us choose a fixed path γ′ from x0 to x1

so that we can represent each element in π−1(U) by a pair [(γ, z)] where the path γ first
follows γ′ from x0 to x1. Let us now define a map φU : π−1(U)→ U ×U(1) by

φU([(γ, z)]) := (γ(1), exp
(∫ γ(1)

x1

AU

)
Stokes’ theorem shows that this map is well-defined, i.e., independent of the chosen
representative of the equivalence class. It is now easy to check that this defines a local
trivialization of π : P→ M.

On another open subset V with basepoint x2 we now gave another trivialization φV :
π−1V → V ×U(1). On the overlap U ∩V we therefore have

φU ◦ φ−1
V (x, z) = (x, ϕUV(x)z),

with the function ϕUV : U ∩V → U(1) given by

ϕUV(x) := exp
(∫ x

x1

AU −
∫ x

x2

AV

)
On U ∩V we therefore have

(3) AU − AV = dϕUV ϕ−1
UV .
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Consider the 1-form dθ on U(1). With this we define the following 1-form on π−1(U):

π∗AU − φ∗Udθ

A small computation using (3) then shows that on π−1(U) ∩ π−1(V) we have AU −
φ∗Udθ = AV − φ∗Vdθ so the 1-forms glue together to form a global 1-form A satisfying
dA = π∗F. �

We see that, at the price of going to a (slightly) bigger space P, we can now solve the
equation F = dA. But how should we think of this space P? And what is the potential
A? We will see in the next section that P is an example of a principal bundle, a notion
that makes sense for any Lie group G. On this principal U(1)-bundle, the potential
A ∈ Ω1(P) can be interpreted as a connection with curvature F. In the coming lectures,
we shall see that the integrality assumption on F is fits naturally into the theory of
principal bundles because F/2πi represents the first Chern class of P. Principal bundles
for Lie groups other than U(1) are important for the mathematical description of Yang–
Mills theories, so we will develop the theory in general.

2. PRINCIPAL BUNDLES

The mathematical setting for gauge theories is provided by the theory of principal
fiber bundles. Before we introduce these, we first consider some facts from the theory
of Lie groups.

2.1. Lie groups. Here we give a list of the (minimal) facts that we need from the theory
of Lie groups. At the end of this subsection we will illustrate all statements in the
example of SU(N). If the reader is not familiar with the theory of Lie groups, it will
suffice to replace G by SU(N) in the rest of the lecture notes.

• A Lie group G is a smooth manifold equipped with a group structure such that
all group operations are smooth maps.
• The tangent space at the unit TeG = g is a Lie algebra: it is a vector space equipped

with an antisymmetric bracket [ , ] : g× g→ g satisfying the Jacobi identity

[[X, Y], Z] + [[Z, X], Y] + [[Y, Z], X] = 0, for all X, Y, Z ∈ g.

When the group is abelian, i.e., g1g2 = g2g1 for all g1, g2 ∈ G, the Lie bracket is
zero.
• There exists an exponential map exp : g → G which is a diffeomorphism onto an

open neighborhood of the unit. The exponential map does not satisfy

eXeY = eX+Y,

unless it is abelian. There is a general power series expansion (the Campbell–
Baker–Hausdorff formula) of the product on G in terms of iterated Lie brackets
on g.
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• The Lie group G acts on g by the so-called adjoint action: Adg : g→ g. In fact this
action is linear and therefore a representation of G.

For G = SU(N) this means the following: SU(N) is the following group of matrices:

SU(N) := {A ∈ MatN×N(C), A∗A = 1, det(A) = 1}.

Its Lie algebra is given by

su(N) := {X ∈ MatN×N(C), A∗ = −A, Tr(A) = 0},

equipped with the Lie bracket of matrices: [X, Y] = XY − YX. The exponential map is
just given by the matrix exponential

eX :=
∞

∑
k=0

Ak

k!
,

and we see that indeed eX ∈ SU(N) for X ∈ su(N). The adjoint representation is just
given by conjugation of matrices: AdA(X) = AXA−1.

A smooth action of a Lie group G on a manifold X is defined as for G = U(1). For an
element g ∈ G we shall simply write x 7→ xg for the diffeomorphism defined by g ∈ G,
and we have

xe = x for all x ∈ X, (xg)h = x(gh), for all g, h ∈ G.

Given a smooth action, each X ∈ g induces a generating vector field ξX defined by

ξX(x) :=
d
dt

xetX
∣∣∣∣
t=0

,

2.2. Principal G-bundles. Let M be a smooth manifold, and fix a Lie group G.

Definition 2.1. A principal G-bundle is a given by a surjective submersion π : P → M,
with a free right action of G on P along the fibers of π such that P/G ∼= M, which is
locally trivial in the following sense: for each x ∈ M there exists an open neighborhood
U together with an isomorphism φU : π−1(U)

∼=−→ U×G, compatible with the G-action
and the projection in the sense that the following diagram commutes:

π−1(U)

π

��

φU // U × G

proj
yy

U

Remark 2.2. Here is some standard terminology connected to principal bundles: G is
called the structure group and P the total space. The map π is often referred to as the
projection onto the base M. For a point x ∈ M, the inverse image π−1(x) ⊂ P is called
the fiber over x, also denoted Px. Remark that by definition, each fiber carries a free and
transitive action of G.
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Example 2.3. Let us list some examples of principal G-bundles.

i) Over any manifold M we always have the trivial G-bundle M× G → M, where
G acts on itself by right translation.

ii) As an example of a nontrivial fiber bundle, consider the Hopf fibration S3 → S2

with structure group U(1), see the exercises.
iii) A rich source of examples of principal G bundles comes from the following

theorem: if G ⊂ G′ is a closed compact subgroup of a Lie group, the map
π : G′ → G′/G is a principal G-bundle. (This means that one can prove that
the bundle is locally trivial in this case.) As an example, consider the map
O(n + 1)→ Sn, a principal O(n)-bundle.

iv) The map π : U(1)→ U(1) given by z 7→ zn is a principal Zn-bundle.

A morphism of principal G-bundles is a smooth map f : P1 → P2 which commutes with
the right G-action. A section s of a principal G-bunde is a smooth map s : X → P
satisfying π ◦ s =identity.

As remarked above, we always have the trivial G-bundle M×G → M, but, as before
we are also interested in nontrivial ones. Here is a useful criterion to decide wether a
principal G-bundle is trivial or not:

Lemma 2.4. A G-bundle P is isomorphic to the trivial G-bundle M× G if and only if it has a
global section.

Remark 2.5. There is a “cocycle view” on principal bundles over M as follows: by def-
inition, we can find an open covering {Uα}α∈I of M such that P has local trivialisations
φα : π−1(Uα)→ Uα×G. Two local trivializations (Uα, φα), and (Uβ, φβ) define a smooth
map

ϕαβ : Uα ∩Uβ → G,

by the equation

(φα ◦ φ−1
β )(x, g) = (x, gϕαβ(x)).

(Remark that for each x, ϕαβ(x) us uniquely defined because G acts freely and tran-
sitively on the fibers of π : P → M.) These functions are called transistion functions.
One easily verifies the following conditions satisfied by the transition functions of a
principal bundle:

i) for three local trivializations (Uα, hα), (Uβ, hβ) and (Uγ, hγ),

ϕαβ ϕβγ ϕγα = 1,

on Uα ∩Uβ ∩Uγ,
ii) for each local trivialization (Uα, hα),

ϕαα = 1.
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iii) for all pairs of local trivializations,

ϕβα = ϕ−1
αβ

Conversely, given an open covering {Uα}α∈I of M together with functions {ϕα,β ∈
C∞(Uαβ, G)} satisfying the two properties above, we can construct a principal bundle
P over M as the quotient

P := ä
α∈I

(Uα × G)

/
∼,

where

(xα, gα) ∼ (xβ, gβ)⇐⇒ xα = xβ ∈ Uα ∩Uβ, gα = gβ ϕαβ(xα).

From this point of view, a smooth section s of P is given by a collection {sα}α∈I of
smooth functions sα : Uα → G satisfying sβ ϕαβ = sα.

Remark 2.6 (The gauge group). Let P → M be a principal G-bundle. The set of all
smooth morphisms from P to itself forms a group under composition2, called the the
gauge group G(P) in physics. To understand this group better, pick an element ϕ ∈ G(P).
This element maps any p ∈ P to another point ϕ(p) ∈ π−1(π(p)) in the fiber over
π(p) ∈ M, and therefore corresponds to the action of a unique3 g ∈ G: ϕ(p) = pg. In
this way, we obtain a (smooth) map ϕ̃ : P→ G satisfying

ϕ̃(pg) = g−1 ϕ̃(p)g, for all g ∈ G.

In other words: this ϕ̃ is nothing but a smooth section of the fiber bundle Ad(P) :=
P ×G G associated to the conjugation action h 7→ ghg−1 of G on itself. Remark that
naievely both P and Ad(P) are fiber bundles with fiber ”equal to G”, but closer inspec-
tion show that for Ad(P) the fiber is canonically given by G, whereas for P the fiber
is only non-canonically isomorphic to G, and therefore the section of P do not form a
group. Only for the trivial g-bundle P = M× G, –where the fibers are canonically iso-
morphic to G–, we have that Ad(P) = M× G = P. In view of this, elements gαβ of the
cocycle of Remark 2.5 are called local gauge transformations.

3. VECTOR BUNDLES

An important class of fiber bundles are given by vector bundles: these are fiber bun-
dles with typical fiber a vector space V:

Definition 3.1. A vector bundle of rank r is given by a manifold E together with a smooth
map π : E → M and the structure of an r-dimensional vector space on the fibers
Ex := π−1(x) which is locally trivial in the following sense: each x ∈ M has an open

2Check this! Why is any morphism automatically invertible?
3recall that the action of G is free and transitive along the fibers of π.
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neighborhood U such that there exists a diffeomorphism ϕ : π−1(U)→ U×Cr making
the following diagram commutative

π−1(U)

π

��

ϕ
// U ×Cr

pr1
yy

U

and which is linear over each fiber. A line bundle is a vector bundle of rank one.

Remark 3.2. We can consider real or complex vector bundles, depending on whether
the fibers are vector spaces over R or C. With a view on applications in Quantum
Mechanics, which always works in a complex Hilbert space, our main focus will be on
complex vector bundles.

Example 3.3. Over any manifold M, we always have the trivial vector bundles M×Rr

(real case) and M×Cr (complex). A general vector bundle E need not be of this form:
although it is (by definition) locally a trivial vector bundle, globally it may not be trivial,
but “twisted”. The easiest example of a (real) twisted vector bundle is given by the
Möbius line bundle over the circle: first we write S1 = R/Z, where Z acts on R by
translations x 7→ x + n. We construct a line bundle L over S1 by taking the quotient of
the trivial line bundle over R:

L := (R×R)/Z,

where we let Z act on R×R by either

(x, y) 7→ (x + n, y), or (x, y) 7→ (x + n, (−1)ny).

In both cases, projection onto the first coordinate defines a smooth map L→ S1 turning
L into a line bundle over the circle (check!). In the first case we get the trivial line
bundle S1 ×R, in the second case not: this is the Möbius line bundle as it “flips” as we
go around the circle once.

Remark 3.4. There is a very concrete point of view on vector bundles using cocycles:
Let M =

⋃
α Uα be a cover of M such that over each Uα there is a trivialization ϕα :

π−1(Uα)
∼=−→ Uα ×Cr. (By definition, such a cover exists.) Over Uα ∩Uβ we have two

trivializations:

π−1(Uαβ)
ϕα //

ϕβ

��

Uαβ ×Cr

Uαβ ×Cr
ϕα◦ϕ−1

β

88

Since both ϕα and ϕβ are compatible with the projection to the base we can write

ϕα ◦ ϕ−1
β (x, v) = (x, ϕαβ(v)), for x ∈ Uαβ, v ∈ Cr,
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with ϕαβ : Uαβ → GL(r, C). We now shift our attention to these “transition functions”
ϕαβ. The following properties are easily derived:

ϕαα = 1

ϕβα = ϕ−1
αβ(4)

ϕαβ ϕγα ϕβγ = 1.

These transition functions completely determine the vector bundle E: Given {ϕαβ}α,β∈I

satisfying the three properties above, define

E :=

(
ä
α∈I

Uα ×Cr

)
/ ∼

where

(xα, v) ∼ (xβ, v)⇐⇒ xα = xβ ∈ Uα ∩Uβ, ϕαβ(v) = w.

The properties satisfied by the ϕαβ above guarantee that this defines an equivalence
relation making the quotient well-defined.

Example 3.5 (The tangent bundle). For any smooth manifold M, its tangent bundle is
a real vector bundle: using a coordinate chart we can define local trivializations. The
transition cocycles are given by the Jacobian matrices of the changes of coordinates.
When the tangent bundle TM is trivial (or rather isomorphic to the trivial vector bundle
of rank equal to the dimension n of M), we say that the M is parallelizable. This means
that there exist n-vector fields X1, . . . , Xn that at each point x ∈ M form a basis of Tx M.

Example 3.6 (The universal line bundle over Pn). Recall the manifold structure of pro-
jectve space Pn. Consider the following set:

T := {(v, L) ∈ Cn+1 ×Pn, v ∈ L}.

There is an obvious projection T → Pn projecting onto the second component. Clearly,
the fiber TL, L ∈ Pn is a vector space of dimension 1. In order to be a line bundle, we
have to show local triviality. Over the domain Ui := {[z0, . . . , zn], zi 6= 0} of the chart
ϕi given in (??) there is an bijection

ϕi : π−1(Ui)
∼=−→ Ui ×C,

given by the fact that any vector v in the line spanned by (z0, . . . , zn) ∈ Cn+1 can be
written as

v = λ(
z0

zi
, . . . ,

zi−1

zi
, 1,

zi+1

zi
, . . .

zn

zi
), λ ∈ C.

(Dividing by zi ensures that v determines λ uniquely.) The map above maps v to λ. This
shows that T → Pn is indeed a line bundle.
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To determine the cocycle ϕij ∈ C∞(Uij, C∗)4 underlying this line bundle we consider
the composition

Uij ×C
ϕ−1

j−→ π−1(Uij)
ϕi−→ Uij ×C,

which maps

([z0, . . . , zn], λ) 7→ ([z0, . . . , zn],
zi

zj
λ).

The cocycle is therefore given by ϕij([z0, . . . , zn]) =
zi
zj

.

There is a natural way to get vector bundles from principal bundles:

Remark 3.7 (Pull-back of vector bundles). Let f : M → N be a smooth map, and let
p : E→ N be a vector bundle over N. It is easy to see that

f ∗E = {(x, e) ∈ M× E, f (x) = p(e)}

has a canonical vector bundle structure over X.

Remark 3.8 (Linear algebra constructions with vector bundles). Let E and F be vector
bundles over M. It is not difficult to show that one can extend the standard construc-
tions from linear algebra to define the following vector bundles over M:

i) the direct sum: E⊕ F,
ii) the tensor product E⊗ F,

iii) Hom(E, F) ∼= E∗ ⊗ F.

A section of a vector bundle π : E→ X is a continuous map s : M→ E such that

π ◦ s = 1,

where the 1 on the right hand side means the constant function on X with that value.
Denote the space of sections of E by Γ(X, E). When E is smooth, one can require section
to be be smooth maps as well, and this defines the space of smooth sections Γ∞(X, E).

Principal bundles and vector bundles. Principal bundles are closely related to vector
bundles. The main construction is the following way to get vector bundles from princi-
pal bundles:

Proposition 3.9 (Associated vector bundle). Let π : P → M be a principal G bundle and
ρ : G → GL(V) a representation of G on a vector space V. The space

P×G V := (P×V) / ∼,

where
(p1, v1) ∼ (p2, v2)⇐⇒ ∃g ∈ G, (p1, v1) = (p2g, ρ(g)v2),

has a canonical vector bundle structure.
4Recall that GL(1, C) = C∗
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We can also go back: Let E→ M be a vector bundle of rank r. Define a space

F(E) :=
⋃

x∈M

F(Ex),

where F(Ex) is the space of all bases in Ex: a point ex ∈ F(Ex) is a basis ex := (e1
x, . . . , er

x)

of the vector space Ex. Using the local triviality of the vector bundle E → M, one
can define a smooth manifold structure on F(E), such that the obvious projection π :
F(E) → M turns F(E) into a fiber bundle. There is an action of GL(r, C) on F(E)
preserving the fibers which moves one basis to another. We conclude that F(E) is a
principal GL(r, C)-bundle.
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